Se connecter
S'inscrire
Fiches gratuites
Formules
Blog
Qui aura 20 en maths ?
💯 Teste ton niveau de maths et tente de gagner un des lots !
S'inscrire au jeu
→
Nouveau
🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !
Accéder aux fiches
→
Se connecter
Tous les niveaux
>
Enseignement de spécialité
>
Nombres complexes
Opérations sous forme exponentielle : le produit (multiplication) - Exercice 1
5 min
15
Simplifier les calculs suivants en les mettant sous la forme
r
e
i
θ
re^{i\theta }
r
e
i
θ
où
r
r
r
et
θ
\theta
θ
sont deux réels.
Question 1
z
1
=
3
e
i
π
2
×
2
e
i
π
4
z_{1} =3e^{i\frac{\pi }{2} } \times 2e^{i\frac{\pi }{4} }
z
1
=
3
e
i
2
π
×
2
e
i
4
π
Correction
Soient
r
\red{r}
r
,
r
′
{\color{blue}{r'}}
r
′
,
θ
\green{\theta }
θ
et
θ
′
\pink{\theta'}
θ
′
quatre réels, on a alors :
r
e
i
θ
×
r
′
e
i
θ
′
=
r
×
r
′
×
e
i
(
θ
+
θ
′
)
\red{r}e^{i\green{\theta }} \times {\color{blue}{r'}}e^{i\pink{\theta '}} =\red{r}\times {\color{blue}{r'}}\times e^{i\left(\green{\theta} +\pink{\theta '}\right)}
r
e
i
θ
×
r
′
e
i
θ
′
=
r
×
r
′
×
e
i
(
θ
+
θ
′
)
z
1
=
3
e
i
π
2
×
2
e
i
π
4
z_{1} =\red{3}e^{i\green{\frac{\pi }{2}}} \times {\color{blue}{2}}e^{i\pink{\frac{\pi }{4}}}
z
1
=
3
e
i
2
π
×
2
e
i
4
π
équivaut successivement à :
z
1
=
3
×
2
e
i
π
2
×
e
i
π
4
z_{1} =\red{3}\times {\color{blue}{2}}e^{i\green{\frac{\pi }{2}}} \times e^{i\pink{\frac{\pi }{4}}}
z
1
=
3
×
2
e
i
2
π
×
e
i
4
π
z
1
=
6
e
i
(
π
2
+
π
4
)
z_{1} =6e^{i\left(\green{\frac{\pi }{2}} +\pink{\frac{\pi }{4}} \right)}
z
1
=
6
e
i
(
2
π
+
4
π
)
z
1
=
6
e
i
(
2
×
π
2
×
2
+
π
4
)
z_{1} =6e^{i\left(\frac{2\times \pi }{2\times 2} +\frac{\pi }{4} \right)}
z
1
=
6
e
i
(
2
×
2
2
×
π
+
4
π
)
z
1
=
6
e
i
(
2
π
4
+
π
4
)
z_{1} =6e^{i\left(\frac{2\pi }{4} +\frac{\pi }{4} \right)}
z
1
=
6
e
i
(
4
2
π
+
4
π
)
Ainsi :
z
1
=
6
e
i
3
π
4
z_{1} =6e^{i\frac{3\pi }{4} }
z
1
=
6
e
i
4
3
π
Question 2
z
2
=
4
e
i
π
3
×
5
e
i
5
π
6
z_{2} =4e^{i\frac{\pi }{3} } \times 5e^{i\frac{5\pi }{6} }
z
2
=
4
e
i
3
π
×
5
e
i
6
5
π
Correction
Soient
r
\red{r}
r
,
r
′
{\color{blue}{r'}}
r
′
,
θ
\green{\theta }
θ
et
θ
′
\pink{\theta'}
θ
′
quatre réels, on a alors :
r
e
i
θ
×
r
′
e
i
θ
′
=
r
×
r
′
×
e
i
(
θ
+
θ
′
)
\red{r}e^{i\green{\theta }} \times {\color{blue}{r'}}e^{i\pink{\theta '}} =\red{r}\times {\color{blue}{r'}}\times e^{i\left(\green{\theta} +\pink{\theta '}\right)}
r
e
i
θ
×
r
′
e
i
θ
′
=
r
×
r
′
×
e
i
(
θ
+
θ
′
)
z
2
=
4
e
i
π
3
×
5
e
i
5
π
6
z_{2} =\red{4}e^{i\green{\frac{\pi }{3}}} \times {\color{blue}{5}}e^{i\pink{\frac{5\pi }{6}}}
z
2
=
4
e
i
3
π
×
5
e
i
6
5
π
équivaut successivement à :
z
2
=
4
×
5
e
i
π
3
×
e
i
5
π
6
z_{2} =\red{4}\times {\color{blue}{5}}e^{i\green{\frac{\pi }{3}}} \times e^{i\pink{\frac{5\pi }{6}}}
z
2
=
4
×
5
e
i
3
π
×
e
i
6
5
π
z
2
=
20
e
i
(
π
3
+
5
π
6
)
z_{2} =20e^{i\left(\green{\frac{\pi }{3}} +\pink{\frac{5\pi }{6}} \right)}
z
2
=
20
e
i
(
3
π
+
6
5
π
)
z
2
=
20
e
i
(
2
×
π
2
×
3
+
5
π
6
)
z_{2} =20e^{i\left(\frac{2\times \pi }{2\times 3} +\frac{5\pi }{6} \right)}
z
2
=
20
e
i
(
2
×
3
2
×
π
+
6
5
π
)
z
2
=
20
e
i
(
2
π
6
+
5
π
6
)
z_{2} =20e^{i\left(\frac{2\pi }{6} +\frac{5\pi }{6} \right)}
z
2
=
20
e
i
(
6
2
π
+
6
5
π
)
Ainsi :
z
2
=
20
e
i
7
π
6
z_{2} =20e^{i\frac{7\pi }{6} }
z
2
=
20
e
i
6
7
π
Question 3
z
3
=
6
e
i
3
π
4
×
4
e
−
i
π
6
z_{3} =6e^{i\frac{3\pi }{4} } \times 4e^{-i\frac{\pi }{6} }
z
3
=
6
e
i
4
3
π
×
4
e
−
i
6
π
Correction
Soient
r
\red{r}
r
,
r
′
{\color{blue}{r'}}
r
′
,
θ
\green{\theta }
θ
et
θ
′
\pink{\theta'}
θ
′
quatre réels, on a alors :
r
e
i
θ
×
r
′
e
i
θ
′
=
r
×
r
′
×
e
i
(
θ
+
θ
′
)
\red{r}e^{i\green{\theta }} \times {\color{blue}{r'}}e^{i\pink{\theta '}} =\red{r}\times {\color{blue}{r'}}\times e^{i\left(\green{\theta} +\pink{\theta '}\right)}
r
e
i
θ
×
r
′
e
i
θ
′
=
r
×
r
′
×
e
i
(
θ
+
θ
′
)
z
3
=
6
e
i
3
π
4
×
4
e
−
i
π
6
z_{3} =\red{6}e^{i\green{\frac{3\pi }{4}}} \times {\color{blue}{4}}e^{\pink{-}i\pink{\frac{\pi }{6}}}
z
3
=
6
e
i
4
3
π
×
4
e
−
i
6
π
équivaut successivement à :
z
3
=
6
×
4
e
i
3
π
4
×
e
−
i
π
6
z_{3} =\red{6}\times {\color{blue}{4}}e^{i\green{\frac{3\pi }{4}}} \times e^{\pink{-}i\pink{\frac{\pi }{6}}}
z
3
=
6
×
4
e
i
4
3
π
×
e
−
i
6
π
z
3
=
24
e
i
(
3
π
4
+
(
−
π
6
)
)
z_{3} =24e^{i\left(\green{\frac{3\pi }{4}} +\left(\pink{-\frac{\pi }{6}} \right)\right)}
z
3
=
24
e
i
(
4
3
π
+
(
−
6
π
)
)
z
3
=
24
e
i
(
3
π
4
−
π
6
)
z_{3} =24e^{i\left(\frac{3\pi }{4} -\frac{\pi }{6} \right)}
z
3
=
24
e
i
(
4
3
π
−
6
π
)
z
3
=
24
e
i
(
3
×
3
π
3
×
4
−
2
×
π
2
×
6
)
z_{3} =24e^{i\left(\frac{3\times 3\pi }{3\times 4} -\frac{2\times \pi }{2\times 6} \right)}
z
3
=
24
e
i
(
3
×
4
3
×
3
π
−
2
×
6
2
×
π
)
z
3
=
24
e
i
(
9
π
12
−
2
π
12
)
z_{3} =24e^{i\left(\frac{9\pi }{12} -\frac{2\pi }{12} \right)}
z
3
=
24
e
i
(
12
9
π
−
12
2
π
)
Ainsi :
z
3
=
24
e
i
7
π
12
z_{3} =24e^{i\frac{7\pi }{12} }
z
3
=
24
e
i
12
7
π