Qui aura 20 en maths ?

💯 Le grand concours 100% Terminale revient fin janvier 2026 à l'ESIEA Paris !Découvrir  

Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Loi binomiale - Exercice 5

10 min
20
Question 1

Une expérience aléatoire XX suit une loi binomiale B(n;p)B\left(n; p\right). Son espérance vaut 1,81,8 et son écart-type vaut 1,21,2.
Déterminer nn et pp.

Correction
XX est une variable aléatoire qui suit une loi binomiale B(n,p)B\left(n, p\right), alors l’espérance mathématique E(X)E\left(X\right), la variance V(X)V\left(X\right) et l’écart type σ(X)\sigma\left(X\right) sont égales à :
  • E(X)=n×pE\left(X\right)=n\times p
  • V(X)=n×p×(1p)V\left(X\right)=n\times p\times \left(1-p\right)
  • σ(X)=V(X)=n×p×(1p)\sigma \left(X\right)=\sqrt{V\left(X\right)} =\sqrt{n\times p\times \left(1-p\right)}
  • Ainsi :
    E(X)=1,8E\left(X\right)=1,8 donc
    n×p=1,8n\times p=1,8

    σ(X)=1,2\sigma \left(X\right)=1,2 d'où :
    n×p×(1p)=1,2\sqrt{n\times p\times \left(1-p\right)}=1,2

    Comme : n×p=1,8n\times p=1,8 et n×p×(1p)=1,2\sqrt{n\times p\times \left(1-p\right)}=1,2. Il vient alors que :
    1,8×(1p)=1,2\sqrt{1,8\times \left(1-p\right)} =1,2
    1,8×(1p)=1,221,8\times \left(1-p\right)=1,2^{2}
    1,8×(1p)=1,441,8\times \left(1-p\right)=1,44
    1p=1,441,81-p=\frac{1,44}{1,8}
    1p=0,81-p=0,8
    p=0,81-p=0,8-1
    p=0,2-p=-0,2
    Ainsi :
    p=0,2p=0,2

    Or : n×p=1,8n\times p=1,8 , il vient alors que :
    n×0,2=1,8n\times 0,2=1,8
    n=1,80,2n=\frac{1,8}{0,2}
    D'où :
    n=9n=9

    Signaler une erreur

    Aide-nous à améliorer nos contenus en signalant les erreurs ou problèmes que tu penses avoir trouvés.

    Connecte-toi ou crée un compte pour signaler une erreur.