Nous allons déterminer les solutions de
2y′=−8y .
2y′=−8y équivaut à :
y′=−4ySoit l’équation différentielle
y′=ay où
a est un réel avec
a=0, et où
y est une fonction de la variable
x définie et dérivable sur
R.
Les solutions de cette équation sont les fonctions de la forme : f(x)=keax où k est une constante réelle.On identifie ici que :
a=−4 .
Il en résulte que les solutions de l'équation sont alors :
f(x)=ke−4x où
k est une constante réelle.
Finalement :
f(x)=ke−4x où
k est une constante réelle.
D'après la question précédente,
f est une solution de
(E) si et seulement si
f−h est une solution de
2y′=−8yComme
f−h est une solution de
2y′=−8y .
Il en résulte donc que :
f(x)−h(x)=ke−4x où
k est une constante réelle.
Ainsi :
f(x)=h(x)+ke−4xf(x)=x2−3x+6+ke−4xLes solutions de
(E) sont les fonctions
x↦x2−3x+6+ke−4x où
k est une constante réelle.