Qui aura 20 en maths ?

💯 Teste ton niveau de maths et tente de gagner un des lots !S'inscrire au jeu  

Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Savoir effectuer des calculs numériques utilisant des puissances - Exercice 5

15 min
30
Simplifier au maximum les expressions suivantes :
Question 1

A=(43)51×(34)50A=\left(\frac{4}{3} \right)^{51} \times \left(\frac{3}{4} \right)^{50}

Correction
    Soient xx et yy des réels non nuls.
  • xa×xb=xa+bx^{a} \times x^{b} =x^{a+b}
  • xaxb=xab\frac{x^{a} }{x^{b} } =x^{a-b}
  • (xa)b=xa×b\left(x^{a} \right)^{b} =x^{a\times b}
  • xa=1xax^{-a} =\frac{1}{x^{a} }
  • (xy)a=xaya\left(\frac{x}{y} \right)^{a} =\frac{x^{a} }{y^{a} }
  • (xy)a=xa×ya\left(xy\right)^{a} =x^{a} \times y^{a}
A=(43)51×(34)50A=\left(\frac{4}{3} \right)^{51} \times \left(\frac{3}{4} \right)^{50} équivaut successivement à :
A=451351×350450A=\frac{4^{51} }{3^{51} } \times \frac{3^{50} }{4^{50} }
A=451450×350351A=\frac{4^{51} }{4^{50} } \times \frac{3^{50} }{3^{51} }
A=45150×35051A=4^{51-50} \times 3^{50-51}
A=41×31A=4^{1} \times 3^{-1}
A=4×13A=4\times \frac{1}{3}
Ainsi :
A=43A=\frac{4}{3}

Question 2

B=(3xy)3×x2y5×27x7B=\frac{\left(3xy\right)^{3} \times x^{-2} }{y^{-5} \times 27x^{7} }

Correction
  • xa×xb=xa+bx^{a} \times x^{b} =x^{a+b}
  • xaxb=xab\frac{x^{a} }{x^{b} } =x^{a-b}
  • (xa)b=xa×b\left(x^{a} \right)^{b} =x^{a\times b}
  • xa=1xax^{-a} =\frac{1}{x^{a} }
  • (xy)a=xaya\left(\frac{x}{y} \right)^{a} =\frac{x^{a} }{y^{a} }
  • (xy)a=xa×ya\left(xy\right)^{a} =x^{a} \times y^{a}
B=(3xy)3×x2y5×27x7B=\frac{\left(3xy\right)^{3} \times x^{-2} }{y^{-5} \times 27x^{7} } équivaut successivement à :
B=33×x3×y3×x2y5×27x7B=\frac{3^{3} \times x^{3} \times y^{3} \times x^{-2} }{y^{-5} \times 27x^{7} }
B=27×x3×y3×x2y5×27x7B=\frac{27\times x^{3} \times y^{3} \times x^{-2} }{y^{-5} \times 27x^{7} }
B=27×x3×y3×x2y5×27x7B=\frac{\cancel{ \color{red}27}\times x^{3} \times y^{3} \times x^{-2} }{y^{-5} \times \cancel{ \color{red}27}x^{7} }
B=x3×y3×x2y5×x7B=\frac{x^{3} \times y^{3} \times x^{-2} }{y^{-5} \times x^{7} }
B=x3+(2)×y3y5×x7B=\frac{x^{3+\left(-2\right)} \times y^{3} }{y^{-5} \times x^{7} }
B=x1×y3y5×x7B=\frac{x^{1} \times y^{3} }{y^{-5} \times x^{7} }
B=x1x7×y3y5B=\frac{x^{1} }{x^{7} } \times \frac{y^{3} }{y^{-5} }
B=x17×y3(5)B=x^{1-7} \times y^{3-\left(-5\right)}
B=x6×y3+5B=x^{-6} \times y^{3+5}
B=x6×y8B=x^{-6} \times y^{8}
B=1x6×y8B=\frac{1}{x^{6} } \times y^{8}
Ainsi :
B=y8x6B=\frac{y^{8} }{x^{6} }

Question 3

C=29×94×105185×35×109C=\frac{2^{9} \times 9^{4} \times 10^{-5} }{18^{5} \times 3^{5} \times 10^{-9} }

Correction
  • xa×xb=xa+bx^{a} \times x^{b} =x^{a+b}
  • xaxb=xab\frac{x^{a} }{x^{b} } =x^{a-b}
  • (xa)b=xa×b\left(x^{a} \right)^{b} =x^{a\times b}
  • xa=1xax^{-a} =\frac{1}{x^{a} }
  • (xy)a=xaya\left(\frac{x}{y} \right)^{a} =\frac{x^{a} }{y^{a} }
  • (xy)a=xa×ya\left(xy\right)^{a} =x^{a} \times y^{a}
C=29×94×105185×35×109C=\frac{2^{9} \times 9^{4} \times 10^{-5} }{18^{5} \times 3^{5} \times 10^{-9} } équivaut successivement à :
C=29×94×105(2×9)5×35×109C=\frac{2^{9} \times 9^{4} \times 10^{-5} }{\left(2\times 9\right)^{5} \times 3^{5} \times 10^{-9} }
C=29×94×10525×95×35×109C=\frac{2^{9} \times 9^{4} \times 10^{-5} }{2^{5} \times 9^{5} \times 3^{5} \times 10^{-9} }
C=29×(32)4×10525×(32)5×35×109C=\frac{2^{9} \times \left(3^{2} \right)^{4} \times 10^{-5} }{2^{5} \times \left(3^{2} \right)^{5} \times 3^{5} \times 10^{-9} }
C=29×32×4×10525×32×5×35×109C=\frac{2^{9} \times 3^{2\times 4} \times 10^{-5} }{2^{5} \times 3^{2\times 5} \times 3^{5} \times 10^{-9} }
C=29×38×10525×310×35×109C=\frac{2^{9} \times 3^{8} \times 10^{-5} }{2^{5} \times 3^{10} \times 3^{5} \times 10^{-9} }
C=29×38×10525×310+5×109C=\frac{2^{9} \times 3^{8} \times 10^{-5} }{2^{5} \times 3^{10+5} \times 10^{-9} }
C=29×38×10525×315×109C=\frac{2^{9} \times 3^{8} \times 10^{-5} }{2^{5} \times 3^{15} \times 10^{-9} }
C=2925×38315×105109C=\frac{2^{9} }{2^{5} } \times \frac{3^{8} }{3^{15} } \times \frac{10^{-5} }{10^{-9} }
C=295×3815×105(9)C=2^{9-5} \times 3^{8-15} \times 10^{-5-\left(-9\right)}
C=24×37×105+9C=2^{4} \times 3^{-7} \times 10^{-5+9}
C=24×37×104C=2^{4} \times 3^{-7} \times 10^{4}
C=24×137×104C=2^{4} \times \frac{1}{3^{7} } \times 10^{4}
Ainsi :
C=24×10437C=\frac{2^{4} \times 10^{4} }{3^{7} }