L'équation à résoudre s'écrit encore :
z 5 = 3 + i z^5 = \sqrt{3} + i z 5 = 3 + i Or :
3 + i = 3 2 + 1 2 × ( 3 3 2 + 1 2 + i 1 3 2 + 1 2 ) = 2 × ( 3 2 + i 1 2 ) = 2 ( cos ( π 6 ) + i sin ( π 6 ) ) = 2 e i π 6 \sqrt{3} + i = \sqrt{\sqrt{3}^2 + 1^2} \times \left( \dfrac{\sqrt{3}}{\sqrt{\sqrt{3}^2 + 1^2}} + i \, \dfrac{1}{\sqrt{\sqrt{3}^2 + 1^2}}\right) = 2 \times \left( \dfrac{\sqrt{3}}{2} + i \, \dfrac{1}{2}\right) = 2 \left( \cos\left( \dfrac{\pi}{6} \right) + i \, \sin\left( \dfrac{\pi}{6} \right) \right) = 2\, e^{i \frac{\pi}{6}} 3 + i = 3 2 + 1 2 × ⎝ ⎛ 3 2 + 1 2 3 + i 3 2 + 1 2 1 ⎠ ⎞ = 2 × ( 2 3 + i 2 1 ) = 2 ( cos ( 6 π ) + i sin ( 6 π ) ) = 2 e i 6 π Les cinq solutions complexes
z k z_k z k de l'équation proposée
z 5 = 3 + i z^5 = \sqrt{3} + i z 5 = 3 + i , avec
k = { 0 ; 1 ; 2 ; 3 ; 4 } k = \left\{ 0\,;\,1\,;\,2\,;\,3\,;\,4 \right\} k = { 0 ; 1 ; 2 ; 3 ; 4 } , sont donc données par :
z k = 2 5 e i π 6 + 2 k π 5 = 2 5 e i ( π 30 + 2 k π 5 ) z_k = \sqrt[5]{2} \, e^{i \frac{\frac{\pi}{6}+2k\pi}{5}} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{2k\pi}{5} \right)} z k = 5 2 e i 5 6 π + 2 kπ = 5 2 e i ( 30 π + 5 2 kπ ) Nous recherchons donc les racines cinquièmes du nombre complexe
a = 3 + i a=\sqrt{3} + i a = 3 + i . On a alors les solutions suivantes :
∙ s i k = 0 {\color{blue}{\,\,\, \bullet \,\, \mathrm{si} \,\, k = 0}} ∙ si k = 0 Alors :
z 0 = 2 5 e i π 30 z_0 = \sqrt[5]{2} \, e^{i \frac{\pi}{30}} z 0 = 5 2 e i 30 π ∙ ∙ s i k = 1 {\color{blue}{\,\,\, \bullet \bullet \,\, \mathrm{si} \,\, k = 1}} ∙ ∙ si k = 1 Alors :
z 1 = 2 5 e i ( π 30 + 2 × 1 × π 5 ) = 2 5 e i ( π 30 + 2 π 5 ) = 2 5 e i ( π 30 + 12 π 30 ) = 2 5 e i ( π + 12 π 30 ) = 2 5 e i 13 π 30 z_1 = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{2\times 1 \times \pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{2\pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{12\pi}{30} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi + 12 \pi}{30} \right)} = \sqrt[5]{2} \, e^{i \frac{13 \pi}{30}} z 1 = 5 2 e i ( 30 π + 5 2 × 1 × π ) = 5 2 e i ( 30 π + 5 2 π ) = 5 2 e i ( 30 π + 30 12 π ) = 5 2 e i ( 30 π + 12 π ) = 5 2 e i 30 13 π ∙ ∙ ∙ s i k = 2 {\color{blue}{\,\,\, \bullet \bullet \bullet \,\, \mathrm{si} \,\, k = 2}} ∙ ∙ ∙ si k = 2 Alors :
z 2 = 2 5 e i ( π 30 + 2 × 2 × π 5 ) = 2 5 e i ( π 30 + 4 π 5 ) = 2 5 e i ( π 30 + 24 π 30 ) = 2 5 e i ( π + 24 π 30 ) = 2 5 e i 25 π 30 = 2 5 e i 5 × 5 × π 5 × 6 = 2 5 e i 5 π 6 z_2 = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{2\times 2 \times \pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{4\pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{24\pi}{30} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi + 24 \pi}{30} \right)} = \sqrt[5]{2} \, e^{i \frac{25 \pi}{30}} = \sqrt[5]{2} \, e^{i \frac{5 \times 5 \times \pi}{5 \times 6}} = \sqrt[5]{2} \, e^{i \frac{5\pi}{6}} z 2 = 5 2 e i ( 30 π + 5 2 × 2 × π ) = 5 2 e i ( 30 π + 5 4 π ) = 5 2 e i ( 30 π + 30 24 π ) = 5 2 e i ( 30 π + 24 π ) = 5 2 e i 30 25 π = 5 2 e i 5 × 6 5 × 5 × π = 5 2 e i 6 5 π ∙ ∙ ∙ ∙ s i k = 3 {\color{blue}{\,\,\, \bullet \bullet \bullet \bullet\,\, \mathrm{si} \,\, k = 3}} ∙ ∙ ∙ ∙ si k = 3 Alors :
z 3 = 2 5 e i ( π 30 + 2 × 3 × π 5 ) = 2 5 e i ( π 30 + 6 π 5 ) = 2 5 e i ( π 30 + 36 π 30 ) = 2 5 e i ( π + 36 π 30 ) = 2 5 e i 37 π 30 = 2 5 e i ( 60 − 23 ) π 30 = 2 5 e i ( 2 π − 23 π 30 ) z_3 = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{2\times 3 \times \pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{6\pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{36\pi}{30} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi + 36 \pi}{30} \right)} = \sqrt[5]{2} \, e^{i \frac{37 \pi}{30}} = \sqrt[5]{2} \, e^{i \frac{(60 - 23) \pi}{30}} = \sqrt[5]{2} \, e^{i \left( 2\pi - \frac{23\pi}{30} \right)} z 3 = 5 2 e i ( 30 π + 5 2 × 3 × π ) = 5 2 e i ( 30 π + 5 6 π ) = 5 2 e i ( 30 π + 30 36 π ) = 5 2 e i ( 30 π + 36 π ) = 5 2 e i 30 37 π = 5 2 e i 30 ( 60 − 23 ) π = 5 2 e i ( 2 π − 30 23 π ) Soit :
z 3 = 2 5 e i 2 π e − i 23 π 30 = 2 5 e i 0 e − i 23 π 30 = 2 5 × 1 × e − i 23 π 30 = 2 5 e − i 23 π 30 z_3 = \sqrt[5]{2} \, e^{i \, 2\pi} e^{-i \, \frac{23\pi}{30}} = \sqrt[5]{2} \, e^{i \, 0} e^{-i \, \frac{23\pi}{30}} = \sqrt[5]{2} \, \times 1 \times e^{-i \, \frac{23\pi}{30}} = \sqrt[5]{2} \, e^{-i \, \frac{23\pi}{30}} z 3 = 5 2 e i 2 π e − i 30 23 π = 5 2 e i 0 e − i 30 23 π = 5 2 × 1 × e − i 30 23 π = 5 2 e − i 30 23 π ∙ ∙ ∙ ∙ ∙ s i k = 4 {\color{blue}{\,\,\, \bullet \bullet \bullet \bullet \bullet \,\, \mathrm{si} \,\, k = 4}} ∙ ∙ ∙ ∙ ∙ si k = 4 Alors :
z 4 = 2 5 e i ( π 30 + 2 × 4 × π 5 ) = 2 5 e i ( π 30 + 8 π 5 ) = 2 5 e i ( π 30 + 48 π 30 ) = 2 5 e i ( π + 48 π 30 ) = 2 5 e i 49 π 30 = 2 5 e i ( 60 − 11 ) π 30 = 2 5 e i ( 2 π − 11 π 30 ) z_4 = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{2\times 4 \times \pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{8\pi}{5} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi}{30} + \frac{48\pi}{30} \right)} = \sqrt[5]{2} \, e^{i \left( \frac{\pi + 48 \pi}{30} \right)} = \sqrt[5]{2} \, e^{i \frac{49 \pi}{30}} = \sqrt[5]{2} \, e^{i \frac{(60 - 11) \pi}{30}} = \sqrt[5]{2} \, e^{i \left( 2\pi - \frac{11\pi}{30} \right)} z 4 = 5 2 e i ( 30 π + 5 2 × 4 × π ) = 5 2 e i ( 30 π + 5 8 π ) = 5 2 e i ( 30 π + 30 48 π ) = 5 2 e i ( 30 π + 48 π ) = 5 2 e i 30 49 π = 5 2 e i 30 ( 60 − 11 ) π = 5 2 e i ( 2 π − 30 11 π ) Soit :
z 4 = 2 5 e i 2 π e − i 11 π 30 = 2 5 e i 0 e − i 11 π 30 = 2 5 × 1 × e − i 11 π 30 = 2 5 e − i 11 π 30 z_4 = \sqrt[5]{2} \, e^{i \, 2\pi} e^{-i \, \frac{11\pi}{30}} = \sqrt[5]{2} \, e^{i \, 0} e^{-i \, \frac{11\pi}{30}} = \sqrt[5]{2} \, \times 1 \times e^{-i \, \frac{11\pi}{30}} = \sqrt[5]{2} \, e^{-i \, \frac{11\pi}{30}} z 4 = 5 2 e i 2 π e − i 30 11 π = 5 2 e i 0 e − i 30 11 π = 5 2 × 1 × e − i 30 11 π = 5 2 e − i 30 11 π Finalement, les solutions recherchées sont :
z = 2 5 e i π 30 o u z = 2 5 e i 13 π 30 o u z = 2 5 e i 5 π 6 o u z = 2 5 e − i 23 π 30 o u z = 2 5 e − i 11 π 30 {\color{red}{\boxed{ z = \sqrt[5]{2} \, e^{i \, \frac{\pi}{30}} \,\,\, \mathrm{ou} \,\,\, z = \sqrt[5]{2} \, e^{i \, \frac{13\pi}{30}} \,\,\, \mathrm{ou} \,\,\, z = \sqrt[5]{2} \, e^{i \, \frac{5\pi}{6}} \,\,\, \mathrm{ou} \,\,\, z = \sqrt[5]{2} \, e^{-i \, \frac{23\pi}{30}} \,\,\, \mathrm{ou} \,\,\, z = \sqrt[5]{2} \, e^{-i \, \frac{11\pi}{30}}}}} z = 5 2 e i 30 π ou z = 5 2 e i 30 13 π ou z = 5 2 e i 6 5 π ou z = 5 2 e − i 30 23 π ou z = 5 2 e − i 30 11 π