Qui aura 20 en maths ?

💯 Teste ton niveau de maths et tente de gagner un des lots !S'inscrire au jeu  

Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Dérivations partielles secondes croisées - Pour débuter - Exercice 1

45 min
65
Pour une fonction multivariée (donc à plusieurs variables) la notion de dérivée partielle seconde peut prendre une forme plus subtile. En effet, pour se fixer les idée, considérons la fonction ff, dépendante des deux variables réelles xx et yy, suivante :
(x;y)R2f(x;y)=3x2y+xln(1+y2)+x1+y4(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,y) = 3x^2y + x\ln(1+y^2) + \dfrac{x}{1 + y^4}
Les deux deˊriveˊes partielles premieˋres{\color{blue}{\text{dérivées partielles premières}}} sont :
fx(x;y)=6xy+ln(1+y2)+11+y4{\color{blue}{\bullet \,\,\, \dfrac{\partial f}{\partial x}(x\,;\,y) }} = 6xy + \ln(1+y^2) + \dfrac{1}{1 + y^4}
fy(x;y)=3x2+x2y1+y2x4y3(1+y4)2{\color{blue}{\bullet \,\,\, \dfrac{\partial f}{\partial y}(x\,;\,y) }} = 3x^2 + x\dfrac{2y}{1+y^2} - x\dfrac{4y^3}{(1 + y^4)^2}
De suite, on en déduit les deux deˊriveˊes partielles secondes{\color{red}{\text{dérivées partielles secondes}}} qui sont :
2fx2(x;y)=6y{\color{red}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) }} = 6y
2fy2(x;y)=2x(y14y127y1023y8y6+9y4+7y21)(1+y2)2(1+y4)3{\color{red}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) }} = - \dfrac{2x (y^{14} -y^{12} - 7y^{10} - 23y^8 - y^6 + 9y^4 + 7y^2 - 1 )}{(1+y^2)^2 (1+y^4)^3}
Mais il est possible de dériver une première fois selon une des deux variables, puis de dériver cette dernière expression, mais cette fois par rapport à l'autre variable. On parle alors de deˊriveˊes partielles secondes croiseˊes{\color{green}{\text{dérivées partielles secondes croisées}}}. On a alors les deux possibilités suivantes :
2fxy(x;y)=x(fy)(x;y)=x(3x2+x2y1+y2x4y3(1+y4)2)=6x+2y1+y24y3(1+y4)2{\color{green}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) }} = \dfrac{\partial}{\partial x} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y) = \dfrac{\partial}{\partial x} \left( 3x^2 + x\dfrac{2y}{1+y^2} - x\dfrac{4y^3}{(1 + y^4)^2}\right) = 6x + \dfrac{2y}{1+y^2} - \dfrac{4y^3}{(1 + y^4)^2}
2fyx(x;y)=y(fx)(x;y)=y(6xy+ln(1+y2)+11+y4)=6x+2y1+y24y3(1+y4)2{\color{green}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) }} = \dfrac{\partial}{\partial y} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y) = \dfrac{\partial}{\partial y} \left( 6xy + \ln(1+y^2) + \dfrac{1}{1 + y^4}\right) = 6x + \dfrac{2y}{1+y^2} - \dfrac{4y^3}{(1+y^4)^2}
Sur cet exemple on constate l'égalité entre les deux deˊriveˊes partielles secondes croiseˊes{\color{green}{\text{dérivées partielles secondes croisées}}} :
2fxy(x;y)=2fyx(x;y){\color{green}{\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) }} = {\color{green}{\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) }}
En général, au point (x;y)(x\,;\,y), cette eˊgaliteˊ n’est pas vrai !{\color{green}{\text{cette égalité n'est pas vrai !}}}. Elle est souvent vérifiée mais ce n'est absolument pas une généralité. C'est le  theˊoreˋme de Schwarz{\color{green}{\text{ théorème de Schwarz}}} (parfois appelé  theˊoreˋme de Clairaut{\color{green}{\text{ théorème de Clairaut}}}) qui stipule les conditions de l'égalité.
Cependant, en Physique classique{\color{red}{\text{en Physique classique}}}, ces conditions mathématiques, qui permettent de permuter indifféremment les variables de dérivation, sont toujours satisfaites{\color{red}{\text{sont toujours satisfaites}}}. Ceci est lié à l'existence, donc la réalité, des grandeurs ff étudiées. Ceci est particulièrement utilisé en thermodynamique.
Question 1

Pour la fonction ci-dessous , calculer 2fxy(x;y)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) et 2fyx(x;y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y).
(x;y)R2f(x;y)=3x3y2+xsin(xy)+yex(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,y) = 3x^3y^2 + x\sin(xy) + ye^x

Correction
On a :
fx(x;y)=x(3x3y2+xsin(xy)+yex)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 3x^3y^2 + x\sin(xy) + ye^x \right)
Soit :
fx(x;y)=x(3x3y2)+x(xsin(xy))+x(yex)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 3x^3y^2 \right) + \dfrac{\partial }{\partial x}\left(x\sin(xy) \right) + \dfrac{\partial }{\partial x}\left(ye^x \right)
Soit encore :
fx(x;y)=3y2x(x3)+x(xsin(xy))+yx(ex)\dfrac{\partial f}{\partial x}(x\,;\,y) = 3y^2\dfrac{\partial }{\partial x}\left( x^3 \right) + \dfrac{\partial }{\partial x}\left(x\sin(xy) \right) + y\dfrac{\partial }{\partial x}\left(e^x \right)
Donc :
fx(x;y)=3y23x2+(sin(xy)+xycos(xy))+yex\dfrac{\partial f}{\partial x}(x\,;\,y) = 3y^23x^2 + \left(\sin(xy) + xy\cos(xy)\right) + ye^x
Finalement :
fx(x;y)=9x2y2+sin(xy)+xycos(xy)+yex{\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = 9x^2y^2 + \sin(xy) + xy\cos(xy) + ye^x }}}
Puis, on a :
fy(x;y)=y(3x3y2+xsin(xy)+yex)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 3x^3y^2 + x\sin(xy) + ye^x \right)
Soit :
fy(x;y)=y(3x3y2)+y(xsin(xy))+y(yex)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 3x^3y^2 \right) + \dfrac{\partial }{\partial y}\left(x\sin(xy) \right) + \dfrac{\partial }{\partial y}\left(ye^x \right)
Soit encore :
fx(x;y)=3x3y(y2)+xy(sin(xy))+exy(y)\dfrac{\partial f}{\partial x}(x\,;\,y) = 3x^3\dfrac{\partial }{\partial y}\left( y^2 \right) + x\dfrac{\partial }{\partial y}\left(\sin(xy) \right) + e^x\dfrac{\partial }{\partial y}\left(y \right)
Donc :
fx(x;y)=3x32y+xxcos(xy)+ex1\dfrac{\partial f}{\partial x}(x\,;\,y) = 3x^3 2y + xx\cos(xy) + e^x 1
Finalement :
fy(x;y)=6x3y+x2cos(xy)+ex{\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = 6x^3y + x^2\cos(xy) + e^x }}}
Ainsi, on en déduit que :
2fxy(x;y)=x(fy)(x;y)=x(6x3y+x2cos(xy)+ex)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left(\dfrac{\partial f}{\partial y}\right)(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 6x^3y + x^2\cos(xy) + e^x \right)
Ce qui nous donne :
2fxy(x;y)=x(6x3y)+x(x2cos(xy))+x(ex)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 6x^3y \right) + \dfrac{\partial }{\partial x}\left(x^2\cos(xy)\right) + \dfrac{\partial }{\partial x}\left(e^x \right)
Soit :
2fxy(x;y)=6yx(x3)+x(x2cos(xy))+x(ex)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 6y\dfrac{\partial }{\partial x}\left( x^3 \right) + \dfrac{\partial }{\partial x}\left(x^2\cos(xy)\right) + \dfrac{\partial }{\partial x}\left(e^x \right)
D'où :
2fxy(x;y)=6y3x2+(2xcos(xy)x2ysin(xy))+ex\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 6y3x^2 + \left(2x\cos(xy) - x^2y \sin(xy)\right) + e^x
Finalement :
2fxy(x;y)=18x2y+2xcos(xy)x2ysin(xy)+ex{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 18x^2y + 2x\cos(xy) - x^2y \sin(xy) + e^x }}}
Puis, on a :
2fyx(x;y)=y(fx)(x;y)=y(9x2y2+sin(xy)+xycos(xy)+yex)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left(\dfrac{\partial f}{\partial x}\right)(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 9x^2y^2 + \sin(xy) + xy\cos(xy) + ye^x \right)
Ce qui nous donne :
2fyx(x;y)=y(9x2y2)+y(sin(xy))+y(xycos(xy))+y(yex)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 9x^2y^2 \right) + \dfrac{\partial }{\partial y}\left(\sin(xy) \right) + \dfrac{\partial }{\partial y}\left(xy\cos(xy)\right) + \dfrac{\partial }{\partial y}\left(y e^x \right)
Soit :
2fyx(x;y)=9x2y(y2)+y(sin(xy))+xy(ycos(xy))+exy(y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 9x^2\dfrac{\partial }{\partial y}\left( y^2 \right) + \dfrac{\partial }{\partial y}\left(\sin(xy) \right) + x\dfrac{\partial }{\partial y}\left(y\cos(xy)\right) + e^x \dfrac{\partial }{\partial y}\left(y \right)
D'où :
2fyx(x;y)=9x22y+xcos(xy)+x(cos(xy)yxsin(xy))+ex1\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 9x^22y+ x\cos(xy) + x\left(\cos(xy) - yx \sin(xy)\right) + e^x 1
Ce qui nous donne :
2fyx(x;y)=18x2y+xcos(xy)+xcos(xy)yx2sin(xy)+ex\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 18x^2 y+ x\cos(xy) + x\cos(xy) - yx^2 \sin(xy) + e^x
Finalement :
2fyx(x;y)=18x2y+2xcos(xy)x2ysin(xy)+ex{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 18x^2 y+ 2x\cos(xy) - x^2y \sin(xy) + e^x }}}
Question 2

Pour la fonction ci-dessous , calculer 2fxy(x;y)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) et 2fyx(x;y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y).
(x;y)R2f(x;y)=xyln(πy2+x4)+xsin(y)cos(2x)+exy(x\,;\,y) \in {\mathbb{R}^\star}^2 \, \longmapsto f(x\,;\,y) = xy \ln(\pi y^2 + x^4) + x\sin(y)\cos(2x) + e^{xy}

Correction
On a :
fx(x;y)=x(xyln(πy2+x4)+xsin(y)cos(2x)+exy)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( xy \ln(\pi y^2 + x^4) + x\sin(y)\cos(2x) + e^{xy}\right)
Soit :
fx(x;y)=x(xyln(πy2+x4))+x(xsin(y)cos(2x))+x(exy)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( xy \ln(\pi y^2 + x^4)\right) + \dfrac{\partial }{\partial x}\left(x\sin(y)\cos(2x) \right) + \dfrac{\partial }{\partial x}\left(e^{xy}\right)
Donc :
fx(x;y)=yx(xln(πy2+x4))+sin(y)x(xcos(2x))+x(exy)\dfrac{\partial f}{\partial x}(x\,;\,y) = y\dfrac{\partial }{\partial x}\left( x \ln(\pi y^2 + x^4)\right) + \sin(y)\dfrac{\partial }{\partial x}\left(x\cos(2x) \right) + \dfrac{\partial }{\partial x}\left(e^{xy}\right)
On en déduit que :
fx(x;y)=y(ln(πy2+x4)+x4x3πy2+x4)+sin(y)(cos(2x)x2sin(2x))+yexy\dfrac{\partial f}{\partial x}(x\,;\,y) = y\left( \ln(\pi y^2 + x^4) + x\dfrac{4x^3}{\pi y^2 + x^4}\right) + \sin(y)\left(\cos(2x) - x2\sin(2x)\right) + ye^{xy}
Soit :
fx(x;y)=yln(πy2+x4)+4x4yπy2+x4+cos(2x)sin(y)2xsin(2x)sin(y)+yexy{\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = y\ln(\pi y^2 + x^4) + \dfrac{4x^4y}{\pi y^2 + x^4} + \cos(2x)\sin(y) - 2x\sin(2x)\sin(y) + ye^{xy} }}}
La dérivée partielle par rapport à yy est donnée par :
fy(x;y)=y(xyln(πy2+x4)+xsin(y)cos(2x)+exy)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( xy \ln(\pi y^2 + x^4) + x\sin(y)\cos(2x) + e^{xy}\right)
Soit :
fy(x;y)=y(xyln(πy2+x4))+y(xsin(y)cos(2x))+y(exy)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( xy \ln(\pi y^2 + x^4)\right) + \dfrac{\partial }{\partial y}\left(x\sin(y)\cos(2x) \right) + \dfrac{\partial }{\partial y}\left(e^{xy}\right)
Donc :
fy(x;y)=xy(yln(πy2+x4))+xcos(2x)y(sin(y))+y(exy)\dfrac{\partial f}{\partial y}(x\,;\,y) = x\dfrac{\partial }{\partial y}\left( y \ln(\pi y^2 + x^4)\right) + x\cos(2x) \dfrac{\partial }{\partial y}\left(\sin(y) \right) + \dfrac{\partial }{\partial y}\left(e^{xy}\right)
Ce qui nous donne :
fy(x;y)=x(ln(πy2+x4)+y2πyπy2+x4)+xcos(2x)cos(y)+xexy\dfrac{\partial f}{\partial y}(x\,;\,y) = x\left( \ln(\pi y^2 + x^4) + y \dfrac{2\pi y}{\pi y^2 + x^4} \right) + x\cos(2x) \cos(y) + xe^{xy}
Finalement :
fy(x;y)=xln(πy2+x4)+2πxy2πy2+x4+xcos(2x)cos(y)+xexy{\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = x\ln(\pi y^2 + x^4) + \dfrac{2\pi xy^2}{\pi y^2 + x^4} + x\cos(2x)\cos(y) + xe^{xy} }}}
Puis, la première dérivée partielle seconde croisée est donnée par :
2fxy(x;y)=x(fy)(x;y)=x(xln(πy2+x4)+2πxy2πy2+x4+xcos(2x)cos(y)+xexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left(\dfrac{\partial f}{\partial y}\right)(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\ln(\pi y^2 + x^4) + \dfrac{2\pi xy^2}{\pi y^2 + x^4} + x\cos(2x)\cos(y) + xe^{xy} \right)
Ce qui nous donne :
2fxy(x;y)=x(xln(πy2+x4))+x(2πxy2πy2+x4)+x(xcos(2x)cos(y))+x(xexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\ln(\pi y^2 + x^4) \right) + \dfrac{\partial }{\partial x}\left( \dfrac{2\pi xy^2}{\pi y^2 + x^4} \right) + \dfrac{\partial }{\partial x}\left( x\cos(2x)\cos(y) \right) + \dfrac{\partial }{\partial x}\left( xe^{xy} \right)
Soit :
2fxy(x;y)=x(xln(πy2+x4))+2πy2x(xπy2+x4)+cos(y)x(xcos(2x))+x(xexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\ln(\pi y^2 + x^4) \right) + 2\pi y^2 \dfrac{\partial }{\partial x}\left( \dfrac{x}{\pi y^2 + x^4} \right) + \cos(y)\dfrac{\partial }{\partial x}\left( x\cos(2x) \right) + \dfrac{\partial }{\partial x}\left( xe^{xy} \right)
Ce qui nous donne donc :
2fxy(x;y)=(1ln(πy2+x4)+x4x3πy2+x4)+2πy2(1(πy2+x4)x4x3(πy2+x4)2)+cos(y)(cos(2x)x2sin(2x))+(exy+xyexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \left( 1\ln(\pi y^2 + x^4) + x\dfrac{4x^3}{\pi y^2 + x^4} \right) + 2\pi y^2 \left( \dfrac{1\left(\pi y^2 + x^4\right)-x4x^3}{\left(\pi y^2 + x^4\right)^2} \right) + \cos(y)\left( \cos(2x) - x2\sin(2x)\right) + \left( e^{xy} + xye^{xy} \right)
Ainsi :
2fxy(x;y)=(ln(πy2+x4)+4x4πy2+x4)+2πy2(πy2+x44x4(πy2+x4)2)+cos(y)(cos(2x)2xsin(2x))+(1+xy)exy\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \left( \ln(\pi y^2 + x^4) + \dfrac{4x^4}{\pi y^2 + x^4} \right) + 2\pi y^2 \left( \dfrac{\pi y^2 + x^4 -4x^4}{\left(\pi y^2 + x^4\right)^2} \right) + \cos(y)\left( \cos(2x) - 2x\sin(2x)\right) + \left( 1 + xy \right) e^{xy}
Finalement :
2fxy(x;y)=ln(πy2+x4)+4x4πy2+x4+2π2y46πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+xy)exy{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{4x^4}{\pi y^2 + x^4} + \dfrac{2\pi^2 y^4 - 6\pi x^4 y^2}{\left(\pi y^2 + x^4\right)^2} + \cos(y)\left( \cos(2x) - 2x\sin(2x)\right) + \left( 1 + xy \right) e^{xy} }}}
Puis, on a l'autre dérivée partielle seconde croisée associée qui est donnée par :
2fyx(x;y)=y(fx)(x;y)=y(yln(πy2+x4)+4x4yπy2+x4+cos(2x)sin(y)2xsin(2x)sin(y)+yexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left(\dfrac{\partial f}{\partial x}\right)(x\,;\,y) = \dfrac{\partial }{\partial y}\left( y\ln(\pi y^2 + x^4) + \dfrac{4x^4y}{\pi y^2 + x^4} + \cos(2x)\sin(y) - 2x\sin(2x)\sin(y) + ye^{xy} \right)
Ce qui nous donne :
2fyx(x;y)=y(yln(πy2+x4))+y(4x4yπy2+x4)+y(cos(2x)sin(y))y(2xsin(2x)sin(y))+y(yexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( y\ln(\pi y^2 + x^4) \right) + \dfrac{\partial }{\partial y}\left( \dfrac{4x^4y}{\pi y^2 + x^4} \right) + \dfrac{\partial }{\partial y}\left( \cos(2x)\sin(y) \right) - \dfrac{\partial }{\partial y}\left( 2x\sin(2x)\sin(y) \right) + \dfrac{\partial }{\partial y}\left( ye^{xy} \right)
Soit :
2fyx(x;y)=y(yln(πy2+x4))+4x4y(yπy2+x4)+cos(2x)y(sin(y))2xsin(2x)y(sin(y))+y(yexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( y\ln(\pi y^2 + x^4) \right) + 4x^4\dfrac{\partial }{\partial y}\left( \dfrac{y}{\pi y^2 + x^4} \right) + \cos(2x)\dfrac{\partial }{\partial y}\left( \sin(y) \right) - 2x\sin(2x)\dfrac{\partial }{\partial y}\left( \sin(y) \right) + \dfrac{\partial }{\partial y}\left( ye^{xy} \right)
Ce qui nous donne :
2fyx(x;y)=(ln(πy2+x4)+y2πyπy2+x4)+4x4((πy2+x4)y2πy(πy2+x4)2)+cos(2x)cos(y)2xsin(2x)cos(y)+(exy+yxexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \left( \ln(\pi y^2 + x^4) + y \dfrac{2\pi y}{\pi y^2 + x^4}\right) + 4x^4 \left( \dfrac{\left(\pi y^2 + x^4 \right) - y 2\pi y}{\left(\pi y^2 + x^4 \right)^2} \right) + \cos(2x)\cos(y) - 2x\sin(2x)\cos(y) + \left( e^{xy} + yxe^{xy} \right)
On a alors :
2fyx(x;y)=ln(πy2+x4)+2πy2πy2+x4+4x4(x4πy2(πy2+x4)2)+cos(2x)cos(y)2xsin(2x)cos(y)+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2\pi y^2}{\pi y^2 + x^4} + 4x^4 \left( \dfrac{ x^4 - \pi y^2}{\left(\pi y^2 + x^4 \right)^2} \right) + \cos(2x)\cos(y) - 2x\sin(2x)\cos(y) + \left( 1 + yx \right)e^{xy}
Soit encore :
2fyx(x;y)=ln(πy2+x4)+2πy2(πy2+x4)(πy2+x4)2+4x84πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2\pi y^2 \left(\pi y^2 + x^4 \right)}{\left(\pi y^2 + x^4 \right)^2} + \dfrac{ 4x^8 - 4\pi x^4y^2}{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Ce qui nous permet d'écrire que :
2fyx(x;y)=ln(πy2+x4)+2π2y4+2πx4y2+4x84πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 + 2\pi x^4 y^2 +4x^8 - 4\pi x^4y^2}{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Soit :
2fyx(x;y)=ln(πy2+x4)+2π2y42πx4y2+4x8(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 2\pi x^4 y^2 +4x^8 }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Par jeux d'écriture, on trouve que :
2fyx(x;y)=ln(πy2+x4)+2π2y42πx4y24x4πy2+4x4πy2+4x8(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 2\pi x^4 y^2 - 4x^4\pi y^2 + 4x^4\pi y^2 + 4x^8 }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Donc :
2fyx(x;y)=ln(πy2+x4)+2π2y42πx4y24πx4y2+4x4(πy2+x4)(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 2\pi x^4 y^2 - 4\pi x^4 y^2 + 4x^4 \left(\pi y^2 + x^4\right) }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
On en déduit que :
2fyx(x;y)=ln(πy2+x4)+2π2y46πx4y2+4x4(πy2+x4)(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 6\pi x^4 y^2 + 4x^4 \left(\pi y^2 + x^4\right) }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
On a donc :
2fyx(x;y)=ln(πy2+x4)+2π2y46πx4y2(πy2+x4)2+4x4(πy2+x4)(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 6\pi x^4 y^2 }{\left(\pi y^2 + x^4 \right)^2} + \dfrac{4x^4 \left(\pi y^2 + x^4\right) }{\left(\pi y^2 + x^4 \right)^2}+ \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
En simplifiant par πy2+x40\pi y^2 + x^4 \neq 0 :
2fyx(x;y)=ln(πy2+x4)+2π2y46πx4y2(πy2+x4)2+4x4πy2+x4+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 6\pi x^4 y^2 }{\left(\pi y^2 + x^4 \right)^2} + \dfrac{4x^4}{\pi y^2 + x^4 }+ \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Finalement, on a :
2fyx(x;y)=ln(πy2+x4)+4x4πy2+x4+2π2y46πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+xy)exy{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{4x^4}{\pi y^2 + x^4} + \dfrac{2\pi^2 y^4 - 6\pi x^4 y^2}{\left(\pi y^2 + x^4\right)^2} + \cos(y)\left( \cos(2x) - 2x\sin(2x)\right) + \left( 1 + xy \right) e^{xy} }}}
Question 3

Pour la fonction ci-dessous , calculer 2fxy(x;y)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) et 2fyx(x;y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y).
(x;y)R2f(x;y)=xcos(xy)+ysinh(x)+xcosh(y)(x\,;\,y) \in \mathbb{R}^2 \, \longmapsto f(x\,;\,y) = x\cos(xy) + y\sinh(x) + x\cosh(y)

Correction
On a :
fx(x;y)=x(xcos(xy)+ysinh(x)+xcosh(y))\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\cos(xy) + y\sinh(x) + x\cosh(y)\right)
Soit :
fx(x;y)=x(xcos(xy))+x(ysinh(x))+x(xcosh(y))\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\cos(xy)\right) + \dfrac{\partial }{\partial x}\left(y\sinh(x) \right) + \dfrac{\partial }{\partial x}\left(x\cosh(y)\right)
Donc :
fx(x;y)=x(xcos(xy))+yx(sinh(x))+cosh(y)x(x)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\cos(xy)\right) + y\dfrac{\partial }{\partial x}\left(\sinh(x) \right) + \cosh(y)\dfrac{\partial }{\partial x}\left(x\right)
D'où :
fx(x;y)=(cos(xy)xysin(xy))+ycosh(x)+cosh(y)1\dfrac{\partial f}{\partial x}(x\,;\,y) = \left( \cos(xy) - xy\sin(xy)\right) + y\cosh(x) + \cosh(y)1
Finalement :
fx(x;y)=cos(xy)xysin(xy)+ycosh(x)+cosh(y){\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = \cos(xy) - xy\sin(xy) + y\cosh(x) + \cosh(y) }}}
Puis, on a :
fy(x;y)=y(xcos(xy)+ysinh(x)+xcosh(y))\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( x\cos(xy) + y\sinh(x) + x\cosh(y)\right)
Soit :
fy(x;y)=y(xcos(xy))+y(ysinh(x))+y(xcosh(y))\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( x\cos(xy)\right) + \dfrac{\partial }{\partial y}\left(y\sinh(x) \right) + \dfrac{\partial }{\partial y}\left(x\cosh(y)\right)
Donc :
fy(x;y)=xy(cos(xy))+sinh(x)y(y)+xy(cosh(y))\dfrac{\partial f}{\partial y}(x\,;\,y) = x\dfrac{\partial }{\partial y}\left( \cos(xy)\right) + \sinh(x)\dfrac{\partial }{\partial y}\left(y\right) + x\dfrac{\partial }{\partial y}\left(\cosh(y)\right)
Ce qui nous donne :
fy(x;y)=xxsin(xy)+sinh(x)1+xsinh(y)\dfrac{\partial f}{\partial y}(x\,;\,y) = -xx\sin(xy) + \sinh(x)1 + x\sinh(y)
Finalement :
fy(x;y)=x2sin(xy)+sinh(x)+xsinh(y){\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = -x^2\sin(xy) + \sinh(x) + x\sinh(y) }}}
Donc, la première dérivée partielle seconde croisée est donnée par :
2fxy(x;y)=x(fy)(x;y)=x(x2sin(xy)+sinh(x)+xsinh(y))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left(\dfrac{\partial f}{\partial y}\right)(x\,;\,y) = \dfrac{\partial }{\partial x}\left( -x^2\sin(xy) + \sinh(x) + x\sinh(y) \right)
Ce qui nous donne :
2fxy(x;y)=x(x2sin(xy))+x(sinh(x))+x(xsinh(y))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( -x^2\sin(xy) \right) + \dfrac{\partial }{\partial x}\left( \sinh(x) \right) + \dfrac{\partial }{\partial x}\left( x\sinh(y) \right)
Soit :
2fxy(x;y)=x(x2sin(xy))+x(sinh(x))+sinh(y)x(x)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = - \dfrac{\partial }{\partial x}\left( x^2\sin(xy) \right) + \dfrac{\partial }{\partial x}\left( \sinh(x) \right) + \sinh(y)\dfrac{\partial }{\partial x}\left( x \right)
Ainsi :
2fxy(x;y)=(2xsin(xy)+x2ycos(xy))+cosh(x)+sinh(y)1\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = - \left( 2x\sin(xy) + x^2y\cos(xy)\right) + \cosh(x) + \sinh(y)1
Finalement :
2fxy(x;y)=cosh(x)+sinh(y)2xsin(xy)x2ycos(xy){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \cosh(x) + \sinh(y) - 2x\sin(xy) - x^2y\cos(xy) }}}
Puis, la deuxième dérivée partielle seconde croisée est donnée par :
2fyx(x;y)=y(fx)(x;y)=y(cos(xy)xysin(xy)+ycosh(x)+cosh(y))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left(\dfrac{\partial f}{\partial x}\right)(x\,;\,y) = \dfrac{\partial }{\partial y}\left( \cos(xy) - xy\sin(xy) + y\cosh(x) + \cosh(y) \right)
Ce qui nous donne :
2fyx(x;y)=y(cos(xy))y(xysin(xy))+y(ycosh(x))+y(cosh(y))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( \cos(xy) \right) - \dfrac{\partial }{\partial y}\left( xy\sin(xy) \right) + \dfrac{\partial }{\partial y}\left( y\cosh(x) \right) + \dfrac{\partial }{\partial y}\left( \cosh(y) \right)
Soit :
2fyx(x;y)=y(cos(xy))xy(ysin(xy))+cosh(x)y(y)+y(cosh(y))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( \cos(xy) \right) - x\dfrac{\partial }{\partial y}\left( y\sin(xy) \right) + \cosh(x)\dfrac{\partial }{\partial y}\left( y \right) + \dfrac{\partial }{\partial y}\left( \cosh(y) \right)
Ce qui nous donne :
2fyx(x;y)=xsin(xy)x(sin(xy)+yxcos(xy))+cosh(x)1+sinh(y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = -x\sin(xy) - x\left( \sin(xy) + yx\cos(xy)\right) + \cosh(x)1 + \sinh(y)
Soit encore :
2fyx(x;y)=2xsin(xy)x2ycos(xy)+cosh(x)+sinh(y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = -2x\sin(xy) - x^2 y\cos(xy) + \cosh(x) + \sinh(y)
Finalement :
2fyx(x;y)=cosh(x)+sinh(y)2xsin(xy)x2ycos(xy){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \cosh(x) + \sinh(y) - 2x\sin(xy) - x^2y\cos(xy) }}}
Question 4

(x;y)R2f(x;y)=ln(1+sinh(x)cosh(2y))(x\,;\,y) \in \mathbb{R}^2 \, \longmapsto f(x\,;\,y) = \ln\left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right)

Correction
On a :
fx(x;y)=x(ln(1+sinh(x)cosh(2y)))=x(1+sinh(x)cosh(2y))1+sinh(x)cosh(2y)=x(sinh(x)cosh(2y))cosh(2y)cosh(2y)+sinh(x)cosh(2y)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial}{\partial x} \left( \ln\left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) \right) = \dfrac{\dfrac{\partial}{\partial x} \left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ 1 + \dfrac{\sinh(x)}{\cosh(2y)}} = \dfrac{\dfrac{\partial}{\partial x} \left( \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ \dfrac{\cosh(2y)}{\cosh(2y)} + \dfrac{\sinh(x)}{\cosh(2y)}}
Soit encore, puisque yR, cosh(2y)0\forall y \in \mathbb{R}, \,\ \cosh(2y) \neq 0 :
fx(x;y)=1cosh(2y)x(sinh(x))cosh(2y)+sinh(x)cosh(2y)=1cosh(2y)cosh(x)cosh(2y)+sinh(x)cosh(2y)=cosh(x)cosh(2y)+sinh(x)1\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\dfrac{1}{\cosh(2y)} \dfrac{\partial }{\partial x}\left( \sinh(x) \right) }{ \dfrac{\cosh(2y)+\sinh(x)}{\cosh(2y)}} = \dfrac{\dfrac{1}{\cosh(2y)} \cosh(x) }{ \dfrac{\cosh(2y)+\sinh(x)}{\cosh(2y)}} = \dfrac{ \cosh(x) }{ \dfrac{\cosh(2y)+\sinh(x)}{1}}
Ce qui nous donne au final :
fx(x;y)=cosh(x)cosh(2y)+sinh(x){\color{blue}{\boxed{\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\cosh(x)}{ \cosh(2y)+\sinh(x)} }}}
Puis, on a également :
fy(x;y)=y(ln(1+sinh(x)cosh(2y)))=y(1+sinh(x)cosh(2y))1+sinh(x)cosh(2y)=y(sinh(x)cosh(2y))cosh(2y)cosh(2y)+sinh(x)cosh(2y)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial}{\partial y} \left( \ln\left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) \right) = \dfrac{\dfrac{\partial}{\partial y} \left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ 1 + \dfrac{\sinh(x)}{\cosh(2y)}} = \dfrac{\dfrac{\partial}{\partial y} \left( \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ \dfrac{\cosh(2y)}{\cosh(2y)} + \dfrac{\sinh(x)}{\cosh(2y)}}
Soit :
fy(x;y)=sinh(x)y(1cosh(2y))cosh(2y)cosh(2y)+sinh(x)cosh(2y)=sinh(x)(2sinh(2y)cosh2(2y))cosh(2y)+sinh(x)cosh(2y)=2sinh(x)sinh(2y)cosh2(2y)cosh(2y)+sinh(x)cosh(2y)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\sinh(x)\dfrac{\partial}{\partial y} \left( \dfrac{1}{\cosh(2y)}\right) }{ \dfrac{\cosh(2y)}{\cosh(2y)} + \dfrac{\sinh(x)}{\cosh(2y)}} = \dfrac{\sinh(x) \left( \dfrac{-2\sinh(2y)}{\cosh^2(2y)} \right) }{\dfrac{\cosh(2y) + \sinh(x)}{\cosh(2y)}} = - \dfrac{ \dfrac{2\sinh(x)\sinh(2y)}{\cosh^2(2y)} }{\dfrac{\cosh(2y) + \sinh(x)}{\cosh(2y)}}
Soit encore, puisque yR, cosh(2y)0\forall y \in \mathbb{R}, \,\ \cosh(2y) \neq 0 :
fy(x;y)=2sinh(x)sinh(2y)cosh(2y)cosh(2y)+sinh(x)1=2sinh(x)sinh(2y)cosh(2y)cosh(2y)+sinh(x)\dfrac{\partial f}{\partial y}(x\,;\,y) = - \dfrac{ \dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y)} }{\dfrac{\cosh(2y) + \sinh(x)}{1}} = - \dfrac{ \dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y)} }{\cosh(2y) + \sinh(x)}
Finalement :
fy(x;y)=2sinh(x)sinh(2y)cosh(2y)(cosh(2y)+sinh(x)){\color{blue}{\boxed{\dfrac{\partial f}{\partial y}(x\,;\,y) = -\dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y) \left( \cosh(2y) + \sinh(x) \right)} }}}
Puis, la première dérivée partielle croisée seconde est donnée par l'expression suivante :
2fxy(x;y)=x(fy)(x;y)=x(2sinh(x)sinh(2y)cosh(2y)(cosh(2y)+sinh(x)))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y}\right) (x\,;\,y) = \dfrac{\partial }{\partial x} \left( -\dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y) \left( \cosh(2y) + \sinh(x) \right)}\right)
Soit :
2fxy(x;y)=2sinh(2y)cosh(2y)x(sinh(x)cosh(2y)+sinh(x))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\dfrac{\sinh(2y)}{\cosh(2y) } \dfrac{\partial }{\partial x} \left( \dfrac{\sinh(x)}{\cosh(2y) + \sinh(x)}\right)
Soit encore :
2fxy(x;y)=2tanh(2y)(cosh(x)(cosh(2y)+sinh(x))sinh(x)cosh(x)(cosh(2y)+sinh(x))2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\tanh(2y)\left( \dfrac{\cosh(x)\left( \cosh(2y) + \sinh(x) \right) - \sinh(x)\cosh(x)}{\left( \cosh(2y) + \sinh(x) \right)^2}\right)
En développant :
2fxy(x;y)=2tanh(2y)(cosh(x)cosh(2y)+sinh(x)cosh(x)sinh(x)cosh(x)(cosh(2y)+sinh(x))2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\tanh(2y)\left( \dfrac{\cosh(x)\cosh(2y) + \sinh(x)\cosh(x) - \sinh(x)\cosh(x)}{\left( \cosh(2y) + \sinh(x) \right)^2}\right)
D'où :
2fxy(x;y)=2tanh(2y)(cosh(x)cosh(2y)(cosh(2y)+sinh(x))2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\tanh(2y)\left( \dfrac{\cosh(x)\cosh(2y) }{\left( \cosh(2y) + \sinh(x) \right)^2}\right)
Ainsi :
2fxy(x;y)=2sinh(2y)cosh(2y)cosh(x)cosh(2y)(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\dfrac{\sinh(2y)}{\cosh(2y)} \dfrac{\cosh(x)\cosh(2y) }{\left( \cosh(2y) + \sinh(x) \right)^2}
Finalement :
2fxy(x;y)=2cosh(x)sinh(2y)(cosh(2y)+sinh(x))2{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -\dfrac{2\cosh(x)\sinh(2y)}{\left( \cosh(2y) + \sinh(x) \right)^2} }}}
Enfin, la deuxième dérivée partielle croisée seconde est donnée par l'expression suivante :
2fyx(x;y)=y(fx)(x;y)=y(cosh(x)cosh(2y)+sinh(x))=cosh(x)y(1cosh(2y)+sinh(x))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x}\right) (x\,;\,y) = \dfrac{\partial }{\partial y} \left( \dfrac{\cosh(x)}{ \cosh(2y)+\sinh(x)} \right) = \cosh(x)\dfrac{\partial }{\partial y} \left( \dfrac{1}{ \cosh(2y)+\sinh(x)} \right)
Soit :
2fyx(x;y)=cosh(x)y(cosh(2y)+sinh(x))(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = - \cosh(x)\dfrac{\dfrac{\partial }{\partial y} \left( \cosh(2y)+\sinh(x) \right)}{ \left(\cosh(2y)+\sinh(x)\right)^2}
Soit encore :
2fyx(x;y)=cosh(x)y(cosh(2y))(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = - \cosh(x)\dfrac{\dfrac{\partial }{\partial y} \left( \cosh(2y) \right)}{ \left(\cosh(2y)+\sinh(x)\right)^2}
Ainsi, on obtient :
2fyx(x;y)=cosh(x)2sinh(2y)(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = - \cosh(x)\dfrac{2\sinh(2y)}{ \left(\cosh(2y)+\sinh(x)\right)^2}
Finalement :
2fyx(x;y)=2cosh(x)sinh(2y)(cosh(2y)+sinh(x))2{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = -\dfrac{2\cosh(x)\sinh(2y)}{\left( \cosh(2y) + \sinh(x) \right)^2} }}}