Une droite (d) représente la fonction affine f telle que f(x)=−2x+1.
Dans un repère, représenter graphiquement la droite (d).
Correction
La représentation graphique d'une fonction affine est une droite.
Pour tracer une droite, il est nécessaire de connaitre au moins les coordonnées de 2 points de cette droite.
Pour tracer la droite (d) on a besoin de 2 points :
Afin de déterminer les coordonnées d'un premier point de la droite (d), il suffit de calculer l'image d'un point quelconque. Calculons ici l'image d'un premier point d’abscisse 0. Pour déterminer l'image de 0 par f, il nous suffit de remplacer x par 0. Il vient alors que : f(0)=−2×0+1
f(0)=1
L'image de 0 par f vaut 1 . Donc ici, on a bien les coordonnées d'un 1er point : (0;1). Calculons ici l'image d'un deuxième point d’abscisse 3. Pour déterminer l'image de 3 par f, il nous suffit de remplacer x par 3. (Ici, on peut choisir n'importe quel autre abscisse.) Il vient alors que : f(3)=−2×3+1 f(3)=−6+1
f(3)=−5
L'image de 3 par f vaut −5. Donc ici, on a bien les coordonnées d'un 2eˋme points : (3;−5).
Question 2
Une droite (d) représente la fonction affine f telle que f(x)=3x−5
Dans un repère, représenter graphiquement la droite (d).
Correction
La représentation graphique d'une fonction affine est une droite.
Pour tracer une droite, il est nécessaire de connaitre au moins les coordonnées de 2 points de cette droite.
Pour tracer la droite (d) on a besoin de 2 points :
Afin de déterminer les coordonnées d'un premier point de la droite (d), il suffit de calculer l'image d'un point quelconque. Calculons ici l'image d'un premier point d’abscisse 0. Pour déterminer l'image de 0 par f, il nous suffit de remplacer x par 0. Il vient alors que : f(0)=3×0−5
f(0)=−5
L'image de 0 par f vaut −5 . Donc ici, on a bien les coordonnées d'un 1er point : (0;−5). Calculons ici l'image d'un deuxième point d’abscisse −2 : (Ici, on peut choisir n'importe quel autre abscisse.) Pour déterminer l'image de −2 par f, il nous suffit de remplacer x par −2. Il vient alors que : f(−2)=3×(−2)−5 f(−2)=−6−5
f(−2)=−11
L'image de −2 par f vaut −11. Donc ici, on a bien les coordonnées d'un 2eˋme points :(−2;−11).