Qui aura 20 en maths ?

💯 Teste ton niveau de maths et tente de gagner un des lots !S'inscrire au jeu  

Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Comment déterminer si une fonction est paire ou impaire ou ni paire ni impaire - Exercice 4

3 min
10
Question 1

Soit la fonction ff définie sur R\mathbb{R} par : f(x)=2cos(4x)5sin(x2)f\left(x\right)=-2\cos \left(4x\right)-5\sin \left(x^{2} \right) . Déterminer si la fonction ff est paire, impaire ou ni paire ni impaire.

Correction
  • ff est une fonction paire si pour tout réel xx, on a f(x)=f(x)f\left(-x\right)=f\left(x\right).
    La fonction cosinus est paire, c'est à dire, que pour tout réel xx, on a : cos(x)=cos(x)\cos \left(-x\right)=\cos \left(x\right)

  • ff est une fonction impaire si pour tout réel xx, on a f(x)=f(x)f\left(-x\right)=-f\left(x\right).
    La fonction sinus est impaire, c'est à dire, que pour tout réel xx, on a : sin(x)=sin(x)\sin \left(-x\right)=-\sin \left(x\right)
  • Calculons f(x)f\left(-x\right) . Ainsi :
    f(x)=4cos(6x8)f\left(x\right)=4\cos \left(6x-8\right)
    f(x)=4cos(6×(x)8)f\left(-x\right)=4\cos \left(6\times \left(-x\right)-8\right)
    f(x)=4cos(6x8)f\left(-x\right)=4\cos \left(-6x-8\right)
    On remarque facilement que f(x)f(x)f\left(-x\right)\ne f\left(x\right) . Donc ff n'est pas paire.
    De plus :
    f(x)=4cos(6x8)-f\left(x\right)=-4\cos \left(6x-8\right)
    On vérifie donc que f(x)f(x)f\left(-x\right)\ne -f\left(x\right)
    Il en résulte donc que la fonction ff est ni paire ni impaire.