Qui aura 20 en maths ?

💯 Teste ton niveau de maths et tente de gagner un des lots !S'inscrire au jeu  

Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Développement - Exercice 4

1 min
0
Question 1

Développer et réduire les expressions suivantes :
a.\bf{a.} \, A(x)=(2x+1)2A(x)=(2x+1)^{2}                                                                                                                         \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} \, B(x)=(3x+5)2B(x)=(3x+5)^{2}

Correction
  • Développer une expression, c'est la transformer en somme.
  • Si on considère 44 nombres relatifs, (a,  b),(a,\;b),  \;alors (a+b)2=a2+2ab+b2\left({\color{blue}a}+{\color{red}b}\right)^{2} ={\color{blue}a}^{2} +2{\color{blue}a}{\color{red}b}+{\color{red}b}^{2} .

a.\bf{a.} \, A(x)=(2x+1)2A(x)=(2x+1)^{2}
        \;\;\;\;\, A(x)=(2x)2+2×2x×1+12A(x)=(2x)^{2}+2\times2x\times1+1^{2}
        \;\;\;\;\, A(x)=4x2+4x+1\color{blue}\boxed{A(x)=4x^2+4x+1}

b.\bf{b.} \, B(x)=(3x+5)2B(x)=(3x+5)^{2}
        \;\;\;\;\, B(x)=(3x)2+2×3x×5+52B(x)=(3x)^{2}+2\times3x\times5+5^{2}
        \;\;\;\;\, B(x)=9x2+30x+25\color{blue}\boxed{B(x)=9x^2+30x+25}
Question 2

Développer et réduire les expressions suivantes :
a.\bf{a.} \, A(x)=(6x3)2A(x)=(6x-3)^{2}                                                                                                                         \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} \, B(x)=(2x7)2B(x)=(2x-7)^{2}

Correction
  • Développer une expression, c'est la transformer en somme.
  • Si on considère 44 nombres relatifs, (a,  b),(a,\;b),  \;alors (ab)2=a22ab+b2\left({\color{blue}a}-{\color{red}b}\right)^{2} ={\color{blue}a}^{2} -2{\color{blue}a}{\color{red}b}+{\color{red}b}^{2} .

a.\bf{a.} \, A(x)=(6x3)2A(x)=(6x-3)^{2}
        \;\;\;\;\, A(x)=(6x)22×6x×3+32A(x)=(6x)^{2}-2\times6x\times3+3^{2}
        \;\;\;\;\, A(x)=36x236x+9\color{blue}\boxed{A(x)=36x^2-36x+9}

b.\bf{b.} \, B(x)=(2x7)2B(x)=(2x-7)^{2}
        \;\;\;\;\, B(x)=(2x)22×2x×7+72B(x)=(2x)^{2}-2\times2x\times7+7^{2}
        \;\;\;\;\, B(x)=4x228x+49\color{blue}\boxed{B(x)=4x^2-28x+49}
Question 3

Développer et réduire les expressions suivantes :
a.\bf{a.} \, A(x)=(4x+2)2A(x)=(4x+2)^{2}                                                                                                                         \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} \, B(x)=(7x+3)2B(x)=(7x+3)^{2}

Correction
  • Développer une expression, c'est la transformer en somme.
  • Si on considère 44 nombres relatifs, (a,  b),(a,\;b),  \;alors (a+b)2=a2+2ab+b2\left({\color{blue}a}+{\color{red}b}\right)^{2} ={\color{blue}a}^{2} +2{\color{blue}a}{\color{red}b}+{\color{red}b}^{2} .

a.\bf{a.} \, A(x)=(4x+2)2A(x)=(4x+2)^{2}
        \;\;\;\;\, A(x)=(4x)2+2×4x×2+22A(x)=(4x)^{2}+2\times4x\times2+2^{2}
        \;\;\;\;\, A(x)=16x2+16x+4\color{blue}\boxed{A(x)=16x^2+16x+4}

b.\bf{b.} \, B(x)=(7x+3)2B(x)=(7x+3)^{2}
        \;\;\;\;\, B(x)=(7x)2+2×7x×3+32B(x)=(7x)^{2}+2\times7x\times3+3^{2}
        \;\;\;\;\, B(x)=49x2+42x+9\color{blue}\boxed{B(x)=49x^2+42x+9}
Question 4

Développer et réduire les expressions suivantes :
a.\bf{a.} \, A(x)=(2x8)2A(x)=(2x-8)^{2}                                                                                                                         \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} \, B(x)=(9x4)2B(x)=(9x-4)^{2}

Correction
  • Développer une expression, c'est la transformer en somme.
  • Si on considère 44 nombres relatifs, (a,  b),(a,\;b),  \;alors (ab)2=a22ab+b2\left({\color{blue}a}-{\color{red}b}\right)^{2} ={\color{blue}a}^{2} -2{\color{blue}a}{\color{red}b}+{\color{red}b}^{2} .

a.\bf{a.} \, A(x)=(2x8)2A(x)=(2x-8)^{2}
        \;\;\;\;\, A(x)=(2x)22×2x×8+82A(x)=(2x)^{2}-2\times2x\times8+8^{2}
        \;\;\;\;\, A(x)=4x232x+64\color{blue}\boxed{A(x)=4x^2-32x+64}

b.\bf{b.} \, B(x)=(9x4)2B(x)=(9x-4)^{2}
        \;\;\;\;\, B(x)=(9x)22×9x×4+42B(x)=(9x)^{2}-2\times9x\times4+4^{2}
        \;\;\;\;\, B(x)=81x272x+16\color{blue}\boxed{B(x)=81x^2-72x+16}