La somme des termes d'une suite géométrique est donnée par la formule suivante :
u0+u1+…+un=(premier terme)×(1−q1−qnombres de termes)Il s'agit de la somme des termes d'une suite géométrique de raison
q=4Il vient alors :
S=1+4+42+43+…+49S=40+41+42+43+…+49 car
40=1Nous partons de
40 qui est le premier terme à
49 . Nous avons donc
10 termes.
On applique la formule :
S=1×1−41−410 S=349 525 Pour savoir le nombre de termes présents dans une somme, faites le calcul suivant :
grand indice−petit indice+1La somme S=u0+u1+u2+…+un comprend n+1 termes. Ici le plus grand indice est n , le plus petit indice est 0. Ainsi le nombre de termes est égale à : n−0+1=n+1. Nous avons donc n+1 termes.La somme S=u1+u2+…+un comprend n termes. Ici le plus grand indice est n , le plus petit indice est 1. Ainsi le nombre de termes est égale à : n−1+1=n. Nous avons donc n termes.La somme S=up+up+1+…+un comprend n−p+1 termes. Ici le plus grand indice est n , le plus petit indice est p. Ainsi le nombre de termes est égale à : n−p+1=n. Nous avons donc n−p+1 termes.La somme S=u5+u6+…+u22 comprend 18 termes. Ici le plus grand indice est 22 , le plus petit indice est 5. Ainsi le nombre de termes est égale à : 22−5+1=18. Nous avons donc 18 termes.